Soit $A(x) = 2x^2 - 3x - 5$

- 1) a) Factoriser A(x)
 - b) Résoudre alors dans \mathbb{R} l'inéquation $2x^2 3|x| 5 \le 0$
 - c) Dresser le tableau de signe A(x)
 - d) Comparer sans faire le calcul $A(-1-\sqrt{2})$ et $A(1+\sqrt{2})$
- 2) Résoudre dans R les inéquations

a)
$$|x^2 - 2x - 3| < A(x)$$

b)
$$\sqrt{A(x)} \le x - 1$$

3) Soit
$$f(x) = \frac{x^3 - x}{A(x)}$$

- a) Déterminer Df (ensemble des réels x pour lesquels f(x) à un sens)
- b) Vérifier que $f(x) = \frac{x(x-1)}{2x-5}$ pour tout réel de Df
- c) Résoudre dans \mathbb{R} l'inéquation $f(x) \ge x$
 - 1)a) Résoudre dans IR l'équation suivante : $x^2 7x + 6 = 0$
 - b) Résoudre alors dans IR2 les systèmes suivants.

$$(S_1)$$
 $\begin{cases} 2x + y = 7 \\ xy = 3 \end{cases}$ (S_2) $\begin{cases} 1 + xy = 7x \\ \frac{y}{x} = 6 \end{cases}$

2) Résoudre dans IR l'inéquation $\frac{x^2 - 6x + 7}{x + 1} < 1$

Soit le polynôme P définie sur IR par $P(x) = x^3 - x - 1$

Sachant que P admet un racine
$$\alpha \in \left] \frac{2}{\sqrt{3}}, +\infty \right[$$

- 1)a)Montrer que $P(x) = (x \alpha)(x^2 + \alpha x + \alpha^2 1)$
- b)Vérifier que $3\alpha^2 > 4$
- c) En déduire que α est l'unique racine de P.



